extension | φ:Q→Aut N | d | ρ | Label | ID |
(C23×C4)⋊1C4 = C24.5D4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4):1C4 | 128,122 |
(C23×C4)⋊2C4 = C2×C23.9D4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4):2C4 | 128,471 |
(C23×C4)⋊3C4 = C4×C23⋊C4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4):3C4 | 128,486 |
(C23×C4)⋊4C4 = C24.68D4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 16 | | (C2^3xC4):4C4 | 128,551 |
(C23×C4)⋊5C4 = C2×C23.D4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4):5C4 | 128,851 |
(C23×C4)⋊6C4 = C25⋊C4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 16 | | (C2^3xC4):6C4 | 128,513 |
(C23×C4)⋊7C4 = C24.165C23 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4):7C4 | 128,514 |
(C23×C4)⋊8C4 = C24.167C23 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4):8C4 | 128,531 |
(C23×C4)⋊9C4 = C4○C2≀C4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 16 | 4 | (C2^3xC4):9C4 | 128,852 |
(C23×C4)⋊10C4 = C22×C23⋊C4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4):10C4 | 128,1613 |
(C23×C4)⋊11C4 = C2×C23.C23 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4):11C4 | 128,1614 |
(C23×C4)⋊12C4 = C24.17Q8 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4):12C4 | 128,165 |
(C23×C4)⋊13C4 = C22×C2.C42 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4):13C4 | 128,998 |
(C23×C4)⋊14C4 = C2×C4×C22⋊C4 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4):14C4 | 128,1000 |
(C23×C4)⋊15C4 = C2×C23.34D4 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4):15C4 | 128,1011 |
(C23×C4)⋊16C4 = C2×C23.7Q8 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4):16C4 | 128,1010 |
(C23×C4)⋊17C4 = C25.85C22 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4):17C4 | 128,1012 |
(C23×C4)⋊18C4 = C23×C4⋊C4 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4):18C4 | 128,2152 |
(C23×C4)⋊19C4 = C22×C42⋊C2 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4):19C4 | 128,2153 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C23×C4).1C4 = C23.19C42 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).1C4 | 128,12 |
(C23×C4).2C4 = C23⋊C16 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).2C4 | 128,46 |
(C23×C4).3C4 = C23.15M4(2) | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).3C4 | 128,49 |
(C23×C4).4C4 = C23.2M4(2) | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).4C4 | 128,58 |
(C23×C4).5C4 = C2×C23⋊C8 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).5C4 | 128,188 |
(C23×C4).6C4 = C23.8M4(2) | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).6C4 | 128,191 |
(C23×C4).7C4 = C42.393D4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).7C4 | 128,192 |
(C23×C4).8C4 = C25.3C4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 16 | | (C2^3xC4).8C4 | 128,194 |
(C23×C4).9C4 = C2×C22.C42 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).9C4 | 128,473 |
(C23×C4).10C4 = C4×C4.D4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).10C4 | 128,487 |
(C23×C4).11C4 = (C22×C4).275D4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).11C4 | 128,553 |
(C23×C4).12C4 = C24.C8 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 16 | 4 | (C2^3xC4).12C4 | 128,52 |
(C23×C4).13C4 = C2×C22.M4(2) | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).13C4 | 128,189 |
(C23×C4).14C4 = C42.371D4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).14C4 | 128,190 |
(C23×C4).15C4 = (C2×C4)⋊M4(2) | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).15C4 | 128,195 |
(C23×C4).16C4 = C42.42D4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).16C4 | 128,196 |
(C23×C4).17C4 = C23⋊M4(2) | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).17C4 | 128,197 |
(C23×C4).18C4 = C42.43D4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).18C4 | 128,198 |
(C23×C4).19C4 = C4.C22≀C2 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).19C4 | 128,516 |
(C23×C4).20C4 = (C23×C4).C4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).20C4 | 128,517 |
(C23×C4).21C4 = C42.96D4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).21C4 | 128,532 |
(C23×C4).22C4 = C2×C23.C8 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).22C4 | 128,846 |
(C23×C4).23C4 = C22×C4.10D4 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).23C4 | 128,1618 |
(C23×C4).24C4 = C2×M4(2).8C22 | φ: C4/C1 → C4 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).24C4 | 128,1619 |
(C23×C4).25C4 = C2×C22.7C42 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).25C4 | 128,459 |
(C23×C4).26C4 = C23.28C42 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).26C4 | 128,460 |
(C23×C4).27C4 = C4×C22⋊C8 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).27C4 | 128,480 |
(C23×C4).28C4 = C42.378D4 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).28C4 | 128,481 |
(C23×C4).29C4 = C24⋊3C8 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).29C4 | 128,511 |
(C23×C4).30C4 = C23.32M4(2) | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).30C4 | 128,549 |
(C23×C4).31C4 = C2×C22⋊C16 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).31C4 | 128,843 |
(C23×C4).32C4 = C22×C8⋊C4 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).32C4 | 128,1602 |
(C23×C4).33C4 = C2×C4×M4(2) | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).33C4 | 128,1603 |
(C23×C4).34C4 = C22×C22⋊C8 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).34C4 | 128,1608 |
(C23×C4).35C4 = C2×C42.6C4 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).35C4 | 128,1650 |
(C23×C4).36C4 = C42.425D4 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).36C4 | 128,529 |
(C23×C4).37C4 = C24.5C8 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).37C4 | 128,844 |
(C23×C4).38C4 = C2×C24.4C4 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).38C4 | 128,1609 |
(C23×C4).39C4 = C22×C4⋊C8 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 128 | | (C2^3xC4).39C4 | 128,1634 |
(C23×C4).40C4 = C2×C4⋊M4(2) | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).40C4 | 128,1635 |
(C23×C4).41C4 = C2×C42.12C4 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).41C4 | 128,1649 |
(C23×C4).42C4 = C42.677C23 | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 32 | | (C2^3xC4).42C4 | 128,1652 |
(C23×C4).43C4 = C22×M5(2) | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).43C4 | 128,2137 |
(C23×C4).44C4 = C23×M4(2) | φ: C4/C2 → C2 ⊆ Aut C23×C4 | 64 | | (C2^3xC4).44C4 | 128,2302 |